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Abstract. The Q-states gauge Potts model is exactly salved on a special infinite-dimensional 
lattice which is a Bethe lattice of plaquettes. The critical properties are studied. T h e  model 
exhibits a first-order transition far any number of states Q and coordination number y + 1. 
The critical values of coupling constant p, is shown to be in a good agreement with known 
results. 

1. lotroductiun 

An exact solution of lattice gauge theories, as is known, encounters great difficulties. 
This is mainly due to the non-trivial topological structure of real 3~ and 4~ lattices 
(see e.g. Ananikian and Ismailian 1985). In such a situation the development of various 
approximation methods becomes very important, and in recent years remarkable results 
have been achieved in this way (see Drouffe and Zuber 1983, Creutz 1988). However, 
more of known approximations are either not accurate enough or have limited analytical 
abilities. 

For all that, we wish to suggest a new method (Ananikian et a/ 1989, Ananikian 
and Akheyan 1990). An exact analytical solution is obtained on a special simplified 
lattice which is a generalization of the Cayley tree. The lattice has trivial structure (it 
has no closed surface) and generally speaking is nothing but a topological abstraction. 
However, under certain conditions the results obtained on it can be regarded as quite 
a good approximation for normal lattices. At the same time the use of analytical 
expressions permit a deep understanding of the nature of phase transitions. 

As an example, we consider the Q-state gauge Potts model (Kogut 1980), since 
being one of the simplest models it has interesting critical behaviour. Besides the 
known duality properties of the Potts models we can compare our results with quite 
trustworthy ones (exact for d = 4 and obtained from the spin models for d = 3), in 
order better to verify the approximation used. 

In section 2 we introduce the lattice and briefly discuss its main features. The model 
is formulated and some analytical expressions are derived in section 3. In section 4 
we observe critical properties and present some numerical results. Some further remarks 
are made in the conclusion. 

2. The lattice 

The lattice we introduce is constructed by a successive building up of shells. As a zero 
shell we take the central plaquette, and all the subsequent shells come out by gluing 
up y new plaquettes to each free link of a previous shelt. As a result we get the Cayley 
tree of plaquettes (see figure 1) which is characterized by a coordination number (the 
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Figure 1. The Cayley lattice of plaquettes with y = 2 ,  containing two shells. 

number of plaquettes coming out from one link) y +  1 and has an infinite Hausdorff 
dimension. 

Initially there is one essential difference between this lattice and standard ones. 
Because of the too large number of boundary plaquettes the surface effects on the 
generalized Cayley tree cannot be neglected even in the thermodynamic limit n + m 
( n  is the number of shells). This leads to an obvious inequality of plaquettes belonging 
to different shells. As a consequence the local parameters, defined on the Cayley tree 
of plaquettes, will not be translationally invariant. 

The last should be considered as a main property of real lattices, and if we want 
to reproduce their features, we have to restore this invariance. The same problem arises 
on the usual Cayley tree of links and ways of overcoming it are known (Baxter 1982). 
From the whole lattice one should tum to studying only the local properties of plaquettes 
lying deep inside the lattice (infinitely far from the bounary when n + m). These 
plaquettes are entirely equivalent, and the set of them we will call the generalized 
Bethe lattice by analogy with spin models. 

Considering the usual Bethe lattice is known to be equivalent to applying the 
Bethe-Peierls approximation (Bethe 1935, Peierls 1936). Thus the given approach can 
be considered as a development of the Bethe approximation for gauge theories. 

This is not the first attempt of such a kind. Itzykson et al (1983) and Zuber (1984) 
successfully used the Cayley tree of cubes for a partial resummation of the strong 
coupling diagrams. The authors refuse the lattice of plaquettes because of a possible 
contradiction with the Elitzur theorem (Elitzur 1975). Indeed in our study we have to 
introduce at some stage a gauge non-invariant quantity x, which is forbidden by the 
Elitzur theorem. However, Maslanka (1988) showed that the latter theorem is not valid 
for infinite dimensional models, and such are in fact the models on our lattice. 

Finally we wish to mention that considering only internal plaquettes does not mean 
that we can neglect the boundary conditions. The latter play an important role in pure 
gauge theories, making possible the ordered state. How this works in detail we shall 
see in section 4. 

3. The model 

In the Q-state gauge Potts model field variables Ug defined on the links (ij) take their 
values among the group of the Q roots of unity Uv E Z. Then the action is written in 
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the form 

where Up,= U&UkIUl, is the product of the gauge variable along the plaquette 
contour; 6 is the Kronecker symbol; p is the gauge coupling constant, and the sum 
is taken over all the plaquettes of the lattice. 

Summing over all possible configurations of the field variables {U} we find a 
partition function of the model: 

2=  1 e x p S  (3.2) 
(U1 

and the free energy per plaquette is 

here Npl is the total number of lattice plaquettes. 
We will also use the so-called 'average plaquette': 

p = (&D,,,) = 2 - l  Z sup,,, exp s 
( 0 1  

(3.4) 

which is the simplest gauge-invariant quantity. It is connected with the free energy via 
the relation 

and thus describes one plaquette's internal energy. 
Before proceeding with our analyses, we would like to note that all calculations 

given below are done initially for the central link and central plaquette. Based on the 
translational invariance we consider them true for all neighbouring links and plaquettes 
(lying at the finite distance) and this is the very moment when we neglect the surface 
effects and turn from the whole lattice to its internal part. 

The model is solved by means of exact recursion equations. On the finite lattice 
with n shells the partition function (3.2) may be rewritten in the form 

s = z e x p ( ~ ~ u ~ , , ~ ) [ g . ( ~ ~ ) ~ ' [ s . ( ~ ~ ) I ~ [ s , ( ~ ~ ) I ' [ s , ( ~ ~ ) I '  (3.6) 

where the first exponent is the contribution of the central plaquette and g.( U:)  denote 
the partition function of one branch starting from the zero shell link U'. 

Similarly g,( U:) can be expressed through g.-,( U:)-partition function of the 
branch, containing n - 1  shells and starting from the first shell link U ' :  

U: 

g , ( U " ) =  X e x ~ ( p ~ ~ ~ , , , ) [ s . - , ( U ~ ) l ' [ g . ~ , ( ~ ~ ) I ~ [ s , - ~ ( ~ ~ ) l ' .  (3.7) 
u:,u:.u: 

Introducing the notation 

and having summed expression (3.7) over U'  we obtain for x, a recursion formula 

xn = Y ( X , - J  
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where 
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Here and below a = Q - 1 notation is used for writing the formulae in a more compact 
form. 

In the thermodynamic limit n + 00 the recursion succession {x"} tends (as known) 
to the stable solution of the equation 

x = Y(X, P )  (3.10) 

if the latter exist. Equation (3.10) is in fact the equation of state, since though x has 
no direct physical meaning, one can express through it all thermodynamic parameters. 
Thus, for example, the average plaquette calculated from (3.4) is equal to 

("+ i )4+  - x Y ) 4  

(ax7+1) ' (eP  + a ) - a ( l  - x ' ) ~  
P = e P  

Free energy can be determined from (3.3) by integration: 

(3.11) 

(3.12) 

Substituting P ( x , p )  from (3.11) and p(x), dp/dx  from the equation of state (3.10) 
(see equation 4.1) we find 

-Inla(a + 1)x3'+'- (a'-a + 1)x3' +3ax2'+' 

-3(a - 1)xZy -3x' + X I  + c. (3.13) 

This defines the free energy per plaquette up to the integration constant C. The latter 
cannot be uniquely determined; in general it has different values in each phase. This 
will be discussed in more detail in section 4. 

4. Critical properties 

Analysis of critical behaviour is based on the study of solutions of the state equation 
(3.10). For this it is more convenient to  use the plot of function p ( x )  (figure 2(a)), 
since each point of this plot corresponds to some solution of equation (3.10). At Q = 2 
(Z, gauge model) function p ( x )  has two branches in regions x <  1 and x> 1, but they 
are equivalent due to the gauge transformation (x+ l / x  in this case). At Q > 2  there 
are no solutions x >  1 (except the cases mentioned at the end of this section), so it is 
enough to consider only the region 0 s  X S  1. 

As we see, x = 1 is one of the solutions of the state equation at any value of p. 
Analysis of the recursion formula (3.9) shows that it is a stable limiting point for 
succession {x"}, hence x = 1 describes one of possible phases of the system. So far as 
x = 1 is the only solution of (3.10) at small p < psp, this will be the strong coupling 
phase. One can also call it the disordered phase, since we have g.( U = 1) = g.( U # 1). 
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Figure 2. ( 0 )  The plot of p as a function of x for Q = 3 and y = 5. ( b )  The plot of p as 
a function of P for the same values of Q and y. The thick full liner represent the strong 
coupling phase; the thin full lines represent the weak coupling phase; the broken lines 
correspond to the unstable solutions of the equation of state. 

Starting with p =pa,  there appear two new solutions x'  and x,, . The first, x', is not 
a stable point for the recursion succession and therefore no physical state corresponds 
to it. As for solutions x,,(p), they are stable and describe the second phase of the 
model-the weak coupling phase. 

The appearance of a new phase does not yet mean the existence of phase transition. 
First one should solve the outstanding problem of the values of the gauge variable U 
(x,, # 1, hence the new phase will be disordered g.( U = 1) # g.( U # 1)). This problem 
is closely connected with the choice of boundary conditions. At a free boundary all 
terms of the recursion succession x, will be equal to 1, and only the disordered state 
x = 1 is possible. Fixing all boundary variables on some value, say Ub = 1, will shift 
the succession {xn} from the point x = 1 and make feasible a transition to the disordered 
state. 

The behaviour of function p ( x )  is much the same for any y and Q. In all cases 
the model undergoes only a first-order transition, since the new solution xII does not 
coincide with the older one x, = 1 even in the appearing point Pap. The latter is not 
the point where transition occurs, but only the spinoidal point which is the limiting 
metastable region. One can find the value of psp, xSp from the condition 

= O  

which is reduced to the equation on xSp: 
( x y -  l ) (ax'+ 1) -3yx'-'(x- l ) (nx+ 1) = O  

(4.1) 

(4.2) 
The actual location of the first-order phase transition should be deduced from 

comparison of the free energies of both phases: 

.m, p 3  =f(x, , .  P J .  (4.3) 
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In this comparison the as yet undetermined constant in (3.13) becomes of some 
relevance. We must find it independently in each phase, taking as a basis the original 
definition (3.3) and considering the corresponding small and large coupling limits. 

(i) Strong coupling. Substituting x =  1 in equation (3.11) we obtain for the average 
plaquette: 

A Z Akheyan and N S Ananikian 

e@ 
P,=-  

,*+I 

Then free energy, calculated from (3.12), takes the form 

f =  In(eP+a)+ C,. 

In p + 0 limit we have 

f(p +O) = In(a + I ) +  C,. 

On the other hand from (3.3) we have 

(4.4) 

(4.7) 

where Nl/NpI is the number of links/plaquettes of the lattice. Comparing (4.6) and 
(4.7) we see that 

C,= - -I  InQ. 1 (4.8) 

(ii) Weak coupling. From equation (3.13) in the limit p+m we obtain 

f(P +m) = P +  C,. (4.9) 

At the same time p + m limit selects only the gauge fields configurations maximizing 
S,, i.e. with all Up, set to unity. The number of such configurations is QN. (A', is the 
number of lattice sites), hence 

(4.10) NS f+ p +- In 0. 
NP 

Thus the weak coupling constant will equal 

(4.11) 

Now we can compare our results with exact or approximate ones obtained on real 
lattices. As far as effective dimensionality of the generalized Bethe lattice appears to 
be d = 8, we expect to have more accuracy in high dimensions. An this is in fact the 
case. d = 3 simple cubic lattice can be simulated in this approach by setting 

y = 3  c,=o C,=i lnQ.  (4.12) 

Corresponding results for critical coupling pc are presented in table I ,  in comparison 
with more reliable Monte Carlo data. We observe exactness up  to 5%. Meanwhile 
accuracy improves with increasing Q. 

The situation is quite different in four dimensions. On d = 4 hypercubic lattice 
gauge Potts models are self-dual, and the critical point can be deduced exactly: 
pc= I n ( l + f l ) .  We represent this model when 

y = 5  C, = - f In 0 C,=:lnQ. (4.13) 

C,=-InQ. NS 
NP 
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Table 1. Critical values ofthe coupling constant p at d =3. 
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Q Ours MCi  

2 1.459 1.5231 
3 1.554 1.6268 

6 1.799 1.850)) 
4 1.626 i.716n 

t Monte Carlo results (from dual spin Potts models). 
1 Blote el a1 (1989). 
8 Fukugita and Okawa (1989). 
¶Chin-Kun and Kit-Sing (1989). 
11 Wu (1982). 

Now the error is only about 0-1% (see table Z), which is much better than correspoding 
mean field results. Again we observe the obvious improvement with increasing Q. 

Finally we wish to mention one more feature of the model considered. As we have 
said, at  Q = 2 all expressions are invariant under x + l / x  transformation. For Q > 3 
there is no such invariance and equation (3.10) does not have solutions at x >  1. But 
this is not the whole truth. Actually at sufficiently large y function p ( x )  has a second 
branch in the region x >  1 (figure 3). These solutions are not equivalent to those of 

Table 2. Critical values of the coupling constant p at d =4 .  

Q M Ft Ours Exact 

2 0.672 11.863 0.881 
3 0.800 11.995 1.005 
4 0.9 I I 1.091 1.099 
5 0.966 1.169 1.174 
6 1.234 1.238 
8 1.3411 1.343 

10 1.276 1.424 1.426 

t Mean field results (Camarata el al 1984). 

I 
0 0.2 0 . L  0.6 0.8 1.0 1 . 2  1 . 4  

x 

Figure 3. p as a function of x far Q = 3, y = 14. The appearance of a new solution is seen 
in the region x >  1. 



3118 

the region 0 < x < 1 and stable ones describe new states of the system. We can even 
find the second first transition point. However, the analysis of free energy shows that 
this transition takes place in a metastable region. 

A Z Akheyan and N S Ananikian 

5. Conclusion 

As we have mentioned, using the generalized Bethe lattice can be considered as an 
extension of Bethe-Peierls approximation for gauge models. In spin theories the Bethe 
approximation is known to belong to the same class of approximation as mean field 
theory (MFT), being an improvement of the latter. In practice this means that both 
these approaches must coincide in their prediction of order of phase transition and 
values of critical exponents. As for the other critical parameters, the Bethe approxima- 
tion gives better results than MFT (see e.g. Perrugi et al 1983). 

It seems to be true for gauge theories as well. MFT is known always to predict for 
gauge models a first-order transition. The same prediction is valid in our approach, 
though the critical values of the coupling constant p coincide much better with known 
results, especially for d 3 4 .  

This coincidence improves with increasing Q. However, the limit Q + m does not 
give us anything reasonable. Camarata ef al(l984) mentioned a net difference between 
Z, and Potts gauge models. The former with a limit of large Q can be associated with 
U(1) gauge models, while the latter do  not go into any model possessing a continuous 
symmetry group when Q+m. This statement is completely confirmed in our model. 

We restrict our consideration to pure gauge Potts models. As a further extension 
of this model one can introduce matter (Higgs) fields U, in the sites of the lattice: 

In this way we found (Ananikian and Akheyan 1991) the line of first-order transitions. 
This line separates confinement and Higgs phases and terminates by the critical point 
of second-order transition, so that these two phases are continuously connected. At 
the same time we failed to obtain the third phase of the system-the free charges 
phase. It seems that here we reached the limit of our approach: it is not appropriate 
for large pm . 
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